The ferredoxin-NADP(H) reductase from Rhodobacter capsulatus: molecular structure and catalytic mechanism.
نویسندگان
چکیده
The photosynthetic bacterium Rhodobacter capsulatus contains a ferredoxin (flavodoxin)-NADP(H) oxidoreductase (FPR) that catalyzes electron transfer between NADP(H) and ferredoxin or flavodoxin. The structure of the enzyme, determined by X-ray crystallography, contains two domains harboring the FAD and NADP(H) binding sites, as is typical of the FPR structural family. The FAD molecule is in a hairpin conformation in which stacking interactions can be established between the dimethylisoalloxazine and adenine moieties. The midpoint redox potentials of the various transitions undergone by R. capsulatus FPR were similar to those reported for their counterparts involved in oxygenic photosynthesis, but its catalytic activity is orders of magnitude lower (1-2 s(-)(1) versus 200-500 s(-)(1)) as is true for most of its prokaryotic homologues. To identify the mechanistic basis for the slow turnover in the bacterial enzymes, we dissected the R. capsulatus FPR reaction into hydride transfer and electron transfer steps, and determined their rates using stopped-flow methods. Hydride exchange between the enzyme and NADP(H) occurred at 30-150 s(-)(1), indicating that this half-reaction does not limit FPR activity. In contrast, electron transfer to flavodoxin proceeds at 2.7 s(-)(1), in the range of steady-state catalysis. Flavodoxin semiquinone was a better electron acceptor for FPR than oxidized flavodoxin under both single turnover and steady-state conditions. The results indicate that one-electron reduction of oxidized flavodoxin limits the enzyme activity in vitro, and support the notion that flavodoxin oscillates between the semiquinone and fully reduced states when FPR operates in vivo.
منابع مشابه
Purification and characterization of a novel dimeric ferredoxin (FdIII) from Rhodobacter capsulatus.
A new ferredoxin, called FdIII, has been isolated and purified from the photosynthetic bacterium Rhodobacter capsulatus. Its complete amino acid sequence has been determined. The FdIII polypeptide consists of 100 residues, including 9 cysteines and has a calculated molecular mass of 10,688 Da, which was confirmed by electrospray mass spectrometry. In its native form, FdIII is a homodimer as ded...
متن کاملExpression in Escherichia coli and characterization of a recombinant 7Fe ferredoxin of Rhodobacter capsulatus.
The 7Fe ferredoxin of Rhodobacter capsulatus (FdII) could be expressed in Escherichia coli by cloning the fdxA gene coding for FdII downstream from the lac promoter. The expressed recombinant ferredoxin appeared as a brown protein which was specifically recognized in E. coli cell-free extracts by anti-FdII serum. The purified recombinant ferredoxin was indistinguishable from R. capsulatus FdII ...
متن کاملHeparin inhibition of ferredoxin-NADP reductase in chloroplast thylakoid membranes.
Heparin, an anionic polysaccharide, inhibited the ferredoxin-catalyzed reduction of NADP in spinach chloroplast thylakoid membranes. Under the same conditions of assay, heparin did not interfere markedly with photoreduction of methyl viologen, anthraquinone sulfonate, or ferredoxin. A kinetic analysis of the heparin-induced interference with NADP photoreduction showed partial competitive inhibi...
متن کاملElectron Transfer Control in Soluble Methane Monooxygenase
The hydroxylation or epoxidation of hydrocarbons by bacterial multicomponent monooxygenases (BMMs) requires the interplay of three or four protein components. How component protein interactions control catalysis, however, is not well understood. In particular, the binding sites of the reductase components on the surface of their cognate hydroxylases and the role(s) that the regulatory proteins ...
متن کاملRole of the C-terminal tyrosine of ferredoxin-nicotinamide adenine dinucleotide phosphate reductase in the electron transfer processes with its protein partners ferredoxin and flavodoxin.
The catalytic mechanism proposed for ferredoxin-NADP(+) reductase (FNR) is initiated by reduction of its flavin adenine dinucleotide (FAD) cofactor by the obligatory one-electron carriers ferredoxin (Fd) or flavodoxin (Fld) in the presence of oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)). The C-terminal tyrosine of FNR, which stacks onto its flavin ring, modulates the enzyme af...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 44 35 شماره
صفحات -
تاریخ انتشار 2005